Information and Communication Theory
 Problem Set 3 - Solutions
 2022

Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal

1. Non-singular: $C_{1}, C_{3}, C_{4}, C_{5}$

Uniquely decodable: C_{1}, C_{4}, C_{5}
Instantaneous: C_{1}, C_{5}
$L\left(C_{1}\right)=2, L\left(C_{2}\right)=\frac{9}{8}, L\left(C_{3}\right)=\frac{5}{4}, L\left(C_{4}\right)=\frac{15}{8}, L\left(C_{5}\right)=\frac{7}{4}$
2. Hint: Construct binary tree
3. It is possible. Ex: 00, 01, 10, 111, 1100. Not optimal since 1100 could be 110.
4. Not possible.
5.
6. $L\left(C^{S F}\right)=\frac{8}{3}, \rho\left(C^{S F}\right) \approx 0.792$
7. $L(C)=\frac{7}{4} \rho(C)=1$
8. (a) 6. (ternary)

$$
L\left(C^{S F}\right)=\frac{4}{3}, \rho\left(C^{S F}\right)=1
$$

(b) 7. (ternary)

$$
L(C)=\frac{5}{4} \rho(C) \approx 0.883
$$

9. Hint: Think about reducing the source's entropy.
10. $L(C)=1, \rho(C) \approx 0.544$

Order-2: $L(C)=1.36, \rho(C)$ approx 0.80
11. $L(C)=1, \rho(C)=1$

Order-2: $L(C)=2, \rho(C)=1$
12.
13. 24 optimal codes, 8 Huffman codes.
14. 36 optimal codes, all Huffman.
15. 2 weightings: first with two sets of 3 balls, second with one ball each.
16. Expected number of tastings is 2.39. Use Huffman code to find the mixtures, expected number of tastings lowers to 2.35 .

